Measures of Disease Frequency I

Seattle Epidemiology and Biostatistics Summer Session June, 2004

Prevalence and incidence

PREVALENCE is to INCIDENCE as...

Prevalence and incidence

PREVALENCE	is to	INCIDENCE as
stock	is to	flow

Prevalence and incidence

PREVALENCE	is to	INCIDENCE as
stock	is to	flow
wealth	is to	income

Prevalence and incidence

PREVALENCE		is to	INCIDENCE as
•	stock	is to	flow
	wealth	is to	income
	account balance	is to	interest rate

Asymptomatic *C. trachomatis* infection

 Chronic state associated with ↑ risk of pelvic inflammatory disease, ectopic pregnancy, infertility in women

Asymptomatic C. trachomatis infection

- Chronic state associated with ↑ risk of pelvic inflammatory disease, ectopic pregnancy, infertility in women
- · Curable with antibiotics

Asymptomatic C. trachomatis infection

- Chronic state associated with ↑ risk of pelvic inflammatory disease, ectopic pregnancy, infertility in women
- Curable with antibiotics
- 141,336 women tested upon entry into a national job training program during 1990–7

(Source: Am J Public Health 2001; 91:1287–90)

Asymptomatic *C. trachomatis* infection

- Chronic state associated with ↑ risk of pelvic inflammatory disease, ectopic pregnancy, infertility in women
- Curable with antibiotics
- 141,336 women tested upon entry into a national job training program during 1990–7
- 12.5% tested positive for *C. trachomatis*

(Source: *Am J Public Health* 2001; 91:1287–90)

Asymptomatic *C. trachomatis* infection

- Chronic state associated with ↑ risk of pelvic inflammatory disease, ectopic pregnancy, infertility in women
- Curable with antibiotics
- 141,336 women tested upon entry into a national job training program during 1990–7
- 12.5% tested positive for *C. trachomatis*
- What kind of disease frequency measure is this?

(Source: Am J Public Health 2001; 91:1287–90)

Prevalence **Prevalence**

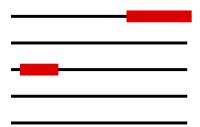
• Measures the frequency of being in the diseased state as of one point in time

Prevalence

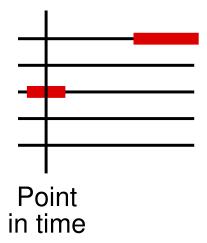
- Measures the frequency of being in the diseased state as of one point in time
 - Count of prevalent cases: no. of people in the diseased state at that time

Prevalence

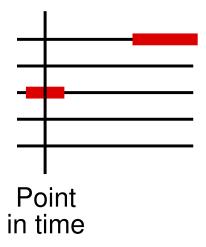
- Measures the frequency of being in the diseased state as of one point in time
 - Count of prevalent cases: no. of people in the diseased state at that time
 - **Prevalence**: No. of prevalent cases
 Size of population


Prevalence

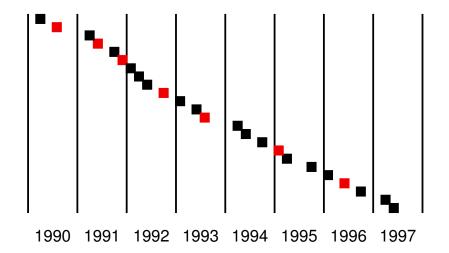
- Measures the frequency of being in the diseased state as of one point in time
 - Count of prevalent cases: no. of people in the diseased state at that time
 - **Prevalence**: No. of prevalent cases
 Size of population
- A static measure: time is "frozen"


Prevalence

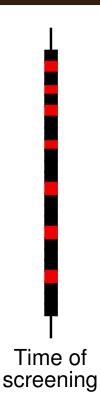
- Measures the frequency of being in the diseased state as of one point in time
 - Count of prevalent cases: no. of people in the diseased state at that time
 - **Prevalence**: No. of prevalent cases
 Size of population
- A static measure: time is "frozen"
- Can be applied to any of several time scales:
 - Calendar time
 - Age
 - · Time relative to some salient event


Prevalence diagram

Prevalence diagram



Prevalence diagram


Prevalence = 1/5 = 0.2 = 20%

Chlamydia case detection over time

Newly recognized cases of infection were detected over the time period 1990–1997. So why isn't this *incidence* rather than *prevalence*?

Each person is not monitored over time

Common bile duct injury in cholecystectomy

During gallbladder surgery, common bile duct may be injured

11

Common bile duct injury in cholecystectomy

Common bile duct injury in cholecystectomy

During gallbladder surgery, common bile

 Does frequency of injury depend on whether intraoperative cholangiography (IOC) used?

duct may be injured

- During gallbladder surgery, common bile duct may be injured
- Does frequency of injury depend on whether intraoperative cholangiography (IOC) used?

IOC used?

Yes	2,380/613,706 = 0.39%
No	5,531/956,655 = 0.58%

(Source: JAMA 2003; 289:1639-44)

11

Common bile duct injury in cholecystectomy

- During gallbladder surgery, common bile duct may be injured
- Does frequency of injury depend on whether intraoperative cholangiography (IOC) used?

IOC used?

Yes	2,380/613,706 = 0.39%
No	5,531/956,655 = 0.58%

 What kind of disease frequency measure is this?

(Source: JAMA 2003; 289:1639-44)

11

Common bile duct injury in cholecystectomy

- During gallbladder surgery, common bile duct may be injured
- Does frequency of injury depend on whether intraoperative cholangiography (IOC) used?

IOC used?	Cumulative incidence
Yes	2,380/613,706 = 0.39%
No	5,531/956,655 = 0.58%

 What kind of disease frequency measure is this?

(Source: JAMA 2003; 289:1639-44)

Incidence Incidence

• Measures frequency of disease *events* over time

Incidence

- Measures frequency of disease events over time
- Transition into diseased state may qualify as an event

Incidence

- Measures frequency of disease events over time
- Transition into diseased state may qualify as an event
- For some purposes, count of incident cases is enough

Incidence

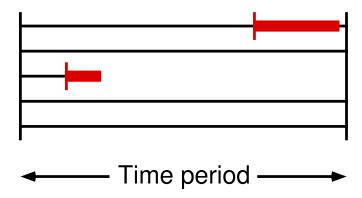
- Measures frequency of disease events over time
- Transition into diseased state may qualify as an event
- For some purposes, count of incident cases is enough
- Otherwise, generally use either:
 - Cumulative incidence
 - Incidence rate

Cumulative incidence

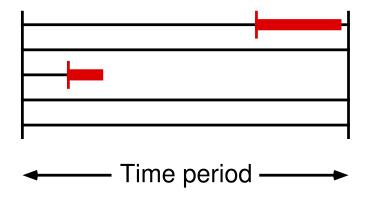
No. of incident cases
 No. of people initially at risk

Cumulative incidence

- No. of incident cases
 No. of people initially at risk
- Applies:
 - To a closed population initially at risk
 - When all persons are followed for same specified time period (at least approximately)


Cumulative incidence

- No. of incident cases
 No. of people initially at risk
- Applies:
 - To a closed population initially at risk
 - When all persons are followed for same specified time period (at least approximately)
- A proportion or percentage


Cumulative incidence

- No. of incident cases
 No. of people initially at risk
- Applies:
 - To a closed population initially at risk
 - When all persons are followed for same specified time period (at least approximately)
- A proportion or percentage
- Also called attack rate or incidence proportion

Cumulative incidence diagram

Cumulative incidence diagram

Cumulative incidence = 2/5 = 0.4 = 40%

Incidence rate

No. of incident cases
 Amount of at-risk experience

Incidence rate

- No. of incident cases
 Amount of at-risk experience
- Denominator usually expressed as person-time

Incidence rate

- No. of incident cases
 Amount of at-risk experience
- Denominator usually expressed as person-time
- · Can be applied:
 - To closed or open populations
 - When population members are at risk for different amounts of time

Incidence rate

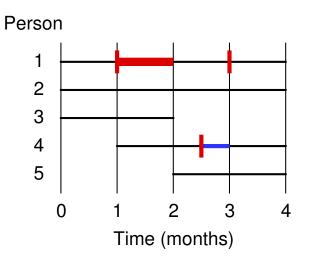
- No. of incident cases
 Amount of at-risk experience
- Denominator usually expressed as person-time
- Can be applied:
 - To closed or open populations
 - When population members are at risk for different amounts of time
- A rate, not a proportion: has units of 1/time

Incidence rate

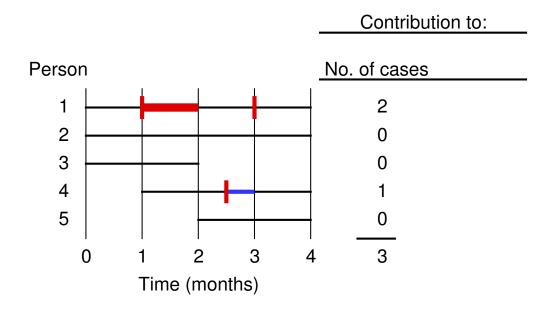
- No. of incident cases
 Amount of at-risk experience
- Denominator usually expressed as person-time
- · Can be applied:
 - To closed or open populations
 - When population members are at risk for different amounts of time
- A rate, not a proportion: has units of 1/time
- Also called incidence density or person-time incidence rate

If detailed data available on each person

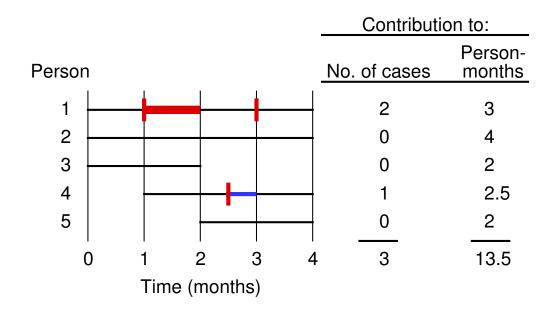
- Calculate each individual's contribution to numerator and denominator
 - Numerator: add up all qualifying disease events
 - Denominator: add up all time at risk

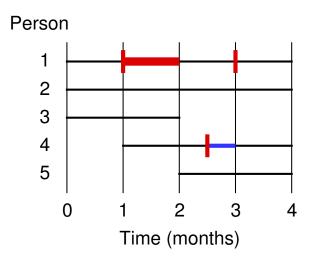

If detailed data available on each person

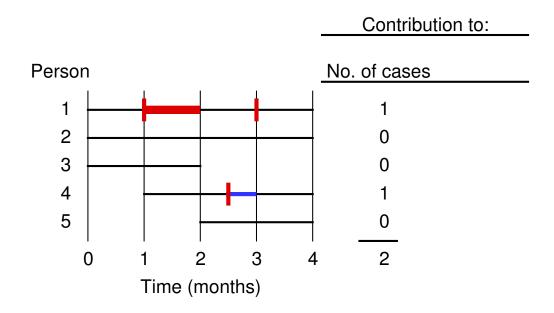
- Calculate each individual's contribution to numerator and denominator
 - Numerator: add up all qualifying disease events
 - Denominator: add up all time at risk
- Example: 15 needle-stick injuries in 1,500 nurse working hours = 1 case per 100 person-hours

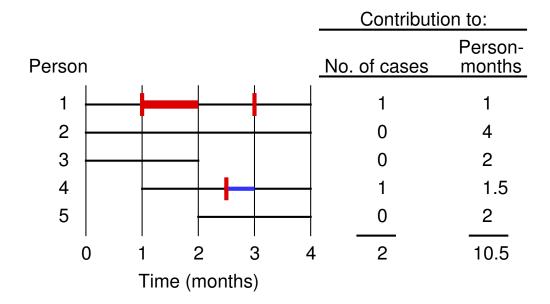

If detailed data available on each person

- Calculate each individual's contribution to numerator and denominator
 - Numerator: add up all qualifying disease events
 - Denominator: add up all time at risk
- Example: 15 needle-stick injuries in 1,500 nurse working hours = 1 case per 100 person-hours
- Calculations may differ depending on whether recurrent events in same person qualify


If recurrent events do qualify...


If recurrent events do qualify...


If recurrent events do qualify...


If only first events qualify...

If only first events qualify...

If only first events qualify...

If detailed data not available on each person

If detailed data not available on each person

Example: 100 heart attack cases occur in 1 year in a city of 100,000 persons

Incidence rate $\approx \frac{100 \text{ cases}}{100,000 \text{ persons} \times 1 \text{ year}}$ $\approx 1.0 \text{ cases per 1000 person-years}$

Variants of incidence

- Mortality
 - Measures burden of fatal disease on the population as a whole

Variants of incidence

- Mortality
 - Measures burden of fatal disease on the population as a whole
 - Cumulative mortality = $\frac{\text{No. of fatal cases}}{\text{No. initially at risk}}$

Variants of incidence

- Mortality
 - Measures burden of fatal disease on the population as a whole
 - Cumulative mortality = $\frac{\text{No. of fatal cases}}{\text{No. initially at risk}}$
 - Mortality rate = No. of fatal cases Person-time at risk

Variants of incidence

- Mortality
 - Measures burden of fatal disease on the population as a whole
 - Cumulative mortality = $\frac{\text{No. of fatal cases}}{\text{No. initially at risk}}$
 - Mortality rate = $\frac{\text{No. of fatal cases}}{\text{Person-time at risk}}$
- Case fatality
 - Measures risk that a person who gets the disease will die of it

Variants of incidence

- Mortality
 - Measures burden of fatal disease on the population as a whole
 - Cumulative mortality = $\frac{\text{No. of fatal cases}}{\text{No. initially at risk}}$
 - Mortality rate = No. of fatal cases Person-time at risk
- Case fatality
 - Measures risk that a person who gets the disease will die of it
 - Case fatality = $\frac{\text{No. of fatal cases}}{\text{Total no. of cases}}$

Proportional mortality

Deaths from a certain disease
 Total no. of deaths

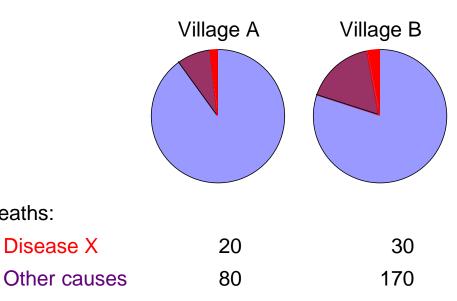
Proportional mortality

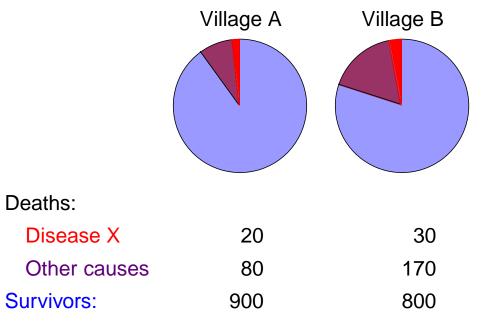
- Deaths from a certain disease
 Total no. of deaths
- Denominator only a proxy for true population at risk

Proportional mortality

- Deaths from a certain disease
 Total no. of deaths
- Denominator only a proxy for true population at risk
- Sometimes used when:
 - Comparing deaths from 2+ diseases in same population

Proportional mortality


- Deaths from a certain disease Total no. of deaths
- Denominator only a proxy for true population at risk
- Sometimes used when:
 - Comparing deaths from 2+ diseases in same population
 - Comparing frequency of death from a certain disease across 2+ populations of unknown size



Pitfall of proportional mortality—1

Deaths:

Disease X

Pitfall of proportional mortality—2

			Propor-
	Death	ns in 1 year	tional
Village	Total	Disease X	mortality
Α	100	20	20%
В	200	30	15%

			Propor-		
	Death	ns in 1 year	tional	Pop.	
Village	Total	Disease X	mortality	size	
Α	100	20	20%	1,000	
В	200	30	15%	1,000	

Pitfall of proportional mortality—2

	Propor-				
	Death	ns in 1 year	tional	Pop.	Mortality
Village	Total	Disease X	mortality	size	rate*
Α	100	20	20%	1,000	20
В	200	30	15%	1,000	30
*Deaths per 1,000 person-years					

			Propor-		
	Death	ns in 1 year	tional	Pop.	Mortality
Village	Total	Disease X	mortality	size	rate*
Α	100	20	20%	1,000	20
В	200	30	15%	1,000	30
	*D	eaths per 1.0	000 person-	vears	

• Proportional mortality greater in Village A

Pitfall of proportional mortality—2

			Propor-		
	Death	ns in 1 year	tional	Pop.	Mortality
Village	Total	Disease X	mortality	size	rate*
Α	100	20	20%	1,000	20
В	200	30	15%	1,000	30

*Deaths per 1,000 person-years

- Proportional mortality greater in Village A
- True mortality rate greater in Village B (!)

Period prevalence

No. of pre-existing cases+No. of new cases

Total population

Period prevalence

No. of pre-existing cases+No. of new cases


Total population

Person 3
4
5

Period prevalence

No. of pre-existing cases+No. of new cases

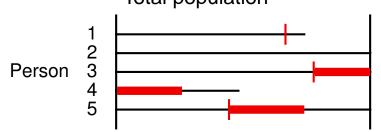
Total population

Period prevalence = 4/5 = 0.8

Period prevalence

• No. of pre-existing cases+No. of new cases

Total population

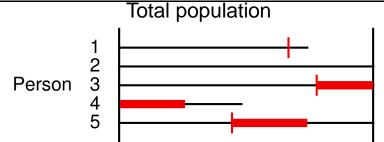

Period prevalence = 4/5 = 0.8

Really a hybrid of prevalence and cumulative incidence

Period prevalence

No. of pre-existing cases+No. of new cases

Total population



Period prevalence = 4/5 = 0.8

- Really a hybrid of prevalence and cumulative incidence
- Interpretable only for closed population

Period prevalence

No. of pre-existing cases+No. of new cases

Period prevalence = 4/5 = 0.8

- Really a hybrid of prevalence and cumulative incidence
- Interpretable only for closed population
- Example: period prevalence of diabetes in pregnant mothers is about 25.3 per 1,000

Introduction to Epidemiologic Methods — Summer, 2004 Discussion Questions: Measures of Disease Frequency—1

- 1. Between January, 1990 and March, 2002, the Food and Drug Administration received 3,339 reports of rhabdomyolysis, a rare disease that involves massive breakdown of skeletal muscle cells, among users of a class of drugs called statins, which reduce blood cholesterol. Some 1,899 of the rhabdomyolysis cases had taken a particular drug, cerivastatin. During that time period, cerivastatin accounted for about 2.0% of all statin prescriptions.
 - Assume for present purposes that the number of days' worth of medication dispensed with each prescription was about the same for all statins and that the reporting of rhabdomyolysis was complete. From the data given, can you estimate the ratio of the incidence of rhabdomyolysis among cerivastatin users to the incidence of rhabdomyolysis among users of other statins? If so, what is it? If not, why not?
- 2. Hepatitis C is of concern to the Department of Veterans Affairs (VA) because many VA users are thought to fall into groups at high risk for this disease. It is believed to cause cirrhosis, liver cancer, and other complications. Among the early studies that have sought to gauge the extent of infection among VA users were:
 - In early 1994, 839 consecutive patients admitted to the Washington, D.C. VA Medical center were tested, and 173 (20.6%) of them were found to be infected with hepatitis C.
 - On March 17, 1999, some 26,000 outpatients at VA clinics nationwide who agreed to be tested were screened for hepatitis C. The exact number of positives is not available, but the prevalence was reported to be 8–10%

What main concern(s) would you have about using these results as estimates of the prevalence of infection among veterans? Would you expect the estimates to be biased upward or downward?